

Tell More

Tim Menzies
West Virginia University
tim@timmenzies.net

Problem

Mountains of data

- Seek "the diamonds in the dust"
- We have many do-ings
 - But what are we learn-ing?
- What general lessons about software quality assurance can we offer NASA?
- Problem of external validity
 - It worked "there" but will it work "here"?

Approach

while not ((end of time OR end of money))

- chase data sets
- extract cost-benefit patterns from data
- check the stability of those patterns
- report stable conclusions

Product metrics:

- NASA metric's data program
- Goddard project
- Flight simulators

Process metrics:

- cost estimation data from JPL
 - Now spun off into a project with Jairus Hihn
- SILAP (IV&V effort potential model)

Importance/ Benefits

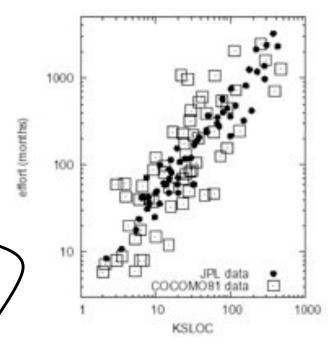
•Generally:

- -NASA does a lot of software
- -What guidance should we offer developers?
- –How good is that guidance
 - Has that guidance been certified?
 - Do we know how general are those guidelines?

Relevance To NASA

Data comes from NASA

- Process metrics:
 - JPL project data
 - IV&V effort potential data
- Product metrics
 - Defect logs from multiple NASA centers
 - Flight simulator data
- Conclusions apply to NASA projects



project	# modules	% with defects	language	developed at	notes
CMI	496	9.7%	C	location 2	a NASA spacecraft instrument
JMI	10885	19%	C	location 3	real-time predictive ground system: uses simulations to generate the predictions
KCI	2107	15.4%	C++	location 4	storage management for receiving and processing ground data
KC2	523	20%	C++	location 4	science data processing; another part of the same project as KC1; different per- sonnel to KC1, shared some third-party software libraries as KC1, but no other software overlap.
PC1	1107	6.8	C	location 5	support tools
Total	15118				

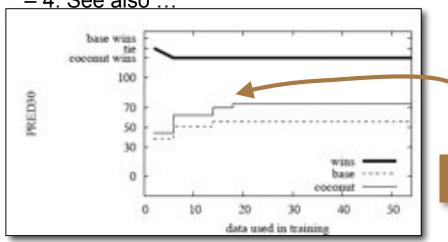
Accomplishments

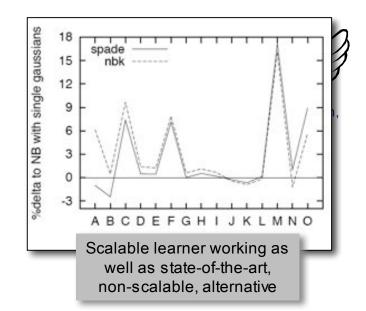
Before:

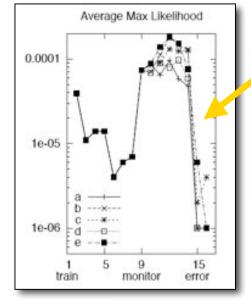
- —Can automatically learn defect detectors from error logs.
- Those defect detectors from code are much BETTER than previously believed
 - Yes, false negative, but adequate to good detection probabilities
 - (Enough) stability across multiple projects

• Now:

- -1. Can automatically learn software cost models
 - AND determine how much data is required to do that
- –2. Can scale up to HUGE data sets
- –3. Can determine when a learned theory goes "out of scope"







Where a learner has left the zone where it was certified

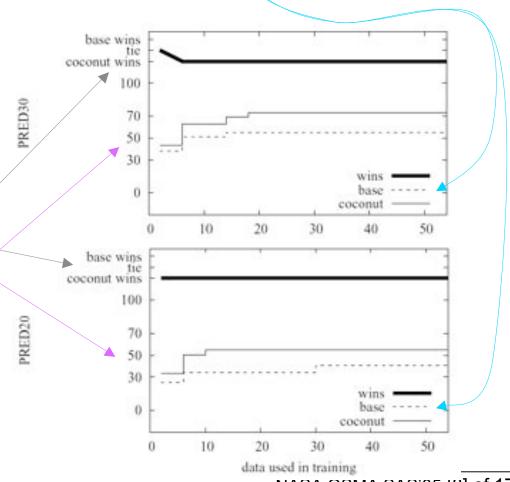
When we have seen enough data to learn a good cost model

1. Can automatically learn software cost models AND determine how much data is required to do that

- Late 2004:
 - Much work on learning software cost models
- Early 2005:
 - That work transferred to a separate SARP project
 - "How much will it cost"?
- Before the transfer (see next slide...)

Straw man $base = a*sloc^b$ $cocomo81 = a*sloc^b * em_1 * em_2 *...$

- 30 repeats (randomizing the order)
- Use t-tests to compare
 - PRED(N) using coc81 or base
 - PRED(N) after N1 or N2 projects
- Significant changes up to
 - 18 projects for PRED(30)
 - 30 projects for PRED(20)



NASA OSMA SAS'05 [8] of 17

2. Can scale up to HUGE data sets

- Work with Andres Orrego (TMC)
- Bayes classifiers

	E_1	E_2	E_3
H = car	job	suburb	wealthy?
ford	tailor	NW	У
ford	tailor	SE	n
ford	tinker	SE	n
bmw	tinker	NW:	у
bmw	tinker	NW:	У
bmw	tailor	NW	У

	$P(E_i H)$					
P(H)	job	suburb	wealthy?			
ford:3=0.5	tinker:1=0.33	NW:1=0.33	y:1=0.33			
	tailor:2=0:67	SE:2=0.67	n:2=0.67			
bmw:3=0.5	tinker:2=0.67	NW:3=1.00	y:3=1.00			
	tailor:1=0.33	SE:0=0.00	n:0=0.00			

- L(H | E) = P(E | H) * P(H)
- $P(H \mid E) = L(H \mid E) / sumOfAllLiklihoods$
- E.g. L(bmw| job=tinker and suburb=NW)= 0.33 * 1.00 * 0.5 = 0.165
- Incremental, fast learning, fast classification, small memory footprint
- Some issues with dependencies but, in practice, works well
- But assume non-numeric data

Numerics and Bayes

Kernel functions

- Gaussian (standard)
- Kernel estimation (John & Langley)
- etc

Discretization policies

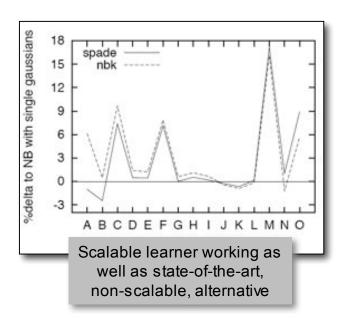
- N-bins: (max-min)/N
- Bin Logging,
- Etc

All N-pass methods

 And scalable data miners should be one pass

SPADE:

- Incremental N-bins
- Simple++, one-pass
- Works very well.



When enough is enough

For 20 data sets and learners, plateau after a few 100 examples

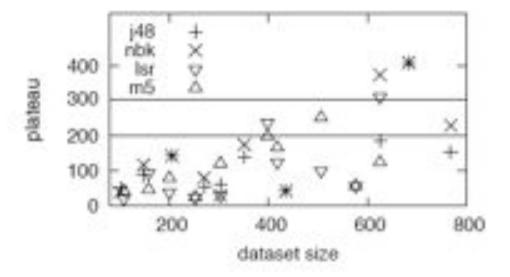
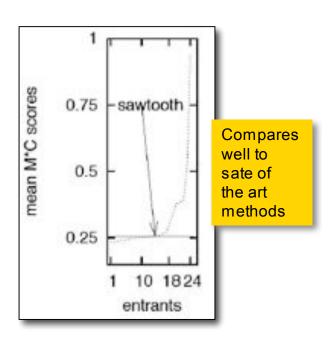


Fig. 1. 10*10 incremental cross validation experiments with J48 and Naive-Bayes (with kernel estimation) on {A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos. G:ionosphere, H:diabetes, I:balance-scale, J:soybean}; M5 and LSR on {K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:autoMpg, T:housing}. All data sets from the UCI repository [8]. Data sets A. J have discrete classes and are scored via the accuracy of the learned theory; i.e. % successful classifications. Data sets K. T have continuous classes and are scored by the PRED(30) of the learned theory; i.e. what % of the estimated values are within 30% of the actual value.

SAWTOOTH= plateau + SPADE

- Learn till plateau
- Only start learning again if performance falls off plateau
 - Recognition of mode changes
- KDD data (5,000,000 examples):
- In summary:
 - Now we can see a lot, learn a little, tell just enough



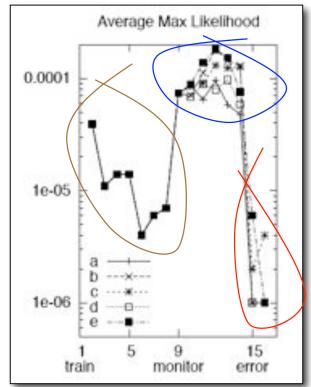
3. Can determine when a learned theory goes "out of scope"

Al & learning & validation

- Monday:
 - · System is certified
- Tuesday:
 - Launch
- Wednesday:
 - · Al learner adapts the software
 - Does the old certification hold?

Solution:

- Anomaly detection
- Detect when new context out of scope of prior certification
- Rings the alarm bells, tells pilot to eject,
 calls the tiger teams, places device into sleep mode
- Many previous (complex) solutions
- Very simple in a SAWTOOTH/SPADE context
 - Place all examples in one class
 - Track average likelihood of new examples in that class



Commissioning

Normal operation

Abnormal situation

4. See Also...

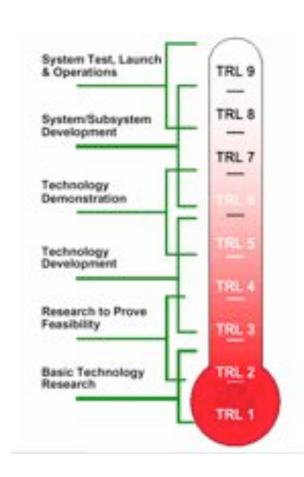
- Much related SARP work
- "Martha":
 - Spot/Cube
- "Tandem Experiments":
 - SPY
- "How much will it cost":
 - Learning software cost models
- "GSFC metrics project"
 - Giving tools to users

Technology Readiness Level of the Work = 5 or 6

Component and/or breadboard validation in a relevant environment

6:

System/subsystem
 model or prototype
 demonstration in a
 relevant environment
 (Ground or Space)



Potential Applications

- 1. Can automatically learn software cost models AND determine how much data is required to do that
 - Software cost estimation
 - Generating locally relevant estimates
- 2. Can scale up to HUGE data sets
 - Simulation-based acquisition
 - Any simulator-based analysis
- 3. Can determine when a learned theory goes "out of scope"
 - Certification and runtime monitoring of autonomous systems

Availability of data or case studies

Data

- Cost estimation data sets public:
 - http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
 - http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff
- Other datasets proprietary

Software:

Free, on request

Barriers to research or applications

- Getting data
- Nervousness regarding use of Al learning systems
 - Good news: much recent NASA work on ISHMs

Next Steps

- Got data?
 - Then meet your new best friend

Current plans

- More defect data studies
 - Dozens, not just 5, data sets
 - Check effectiveness and stability?
- Release of the generalized toolkits
 - Tutorials
 - manuals
- Generalized anomaly detectors
 - The "selection bias" problem
- Synergies with other SARP data mining projects

